
Exclusion process for particles of arbitrary extension: hydrodynamic limit and algebraic

properties

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 8215

(http://iopscience.iop.org/0305-4470/37/34/002)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 8215–8231 PII: S0305-4470(04)79090-3

Exclusion process for particles of arbitrary extension:
hydrodynamic limit and algebraic properties

G Schönherr1 and G M Schütz
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E-mail: g.schoenherr@fz-juelich.de

Received 7 April 2004
Published 11 August 2004
Online at stacks.iop.org/JPhysA/37/8215
doi:10.1088/0305-4470/37/34/002

Abstract
The behaviour of extended particles with exclusion interaction on a one-
dimensional lattice is investigated. The basic model is called �-ASEP as a
generalization of the asymmetric exclusion process (ASEP) to particles of
arbitrary length �. Stationary and dynamical properties of the �-ASEP with
periodic boundary conditions are derived in the hydrodynamic limit from
microscopic properties of the underlying stochastic many-body system. In
particular, the hydrodynamic equation for the local density evolution and the
time-dependent diffusion constant of a tracer particle are calculated. As a
fundamental algebraic property of the symmetric exclusion process the SU(2)
symmetry is generalized to the case of extended particles.

PACS numbers: 05.50.+q, 05.70.Ln, 45.20.Jj, 45.50.Jf, 47.10.+g

1. Introduction

There is renewed interest in the investigation of extended particles with exclusion interaction.
The basic model, which will be referred to as the �-ASEP in the following, is a generalization of
the well-studied asymmetric simple exclusion process (ASEP) [1, 2]. It describes the motion of
hard rods in one-dimensional discrete space by extended particles which move along a lattice
according to stochastic hopping dynamics.

The original concept of the �-ASEP was introduced in 1968 in a paper by MacDonald
and Gibbs treating protein synthesis [3, 4]. During this process, ribosomes move from codon
to codon along a m-RNA template, reading off genetic information and thereby generating
the protein step by step. The ribosomes are modelled as extended particles, which hop
stochastically along a chain without overlapping each other. Each particle covers several
adjacent lattice sites to account for the blocking of several codons by a single ribosome. The
attachment of the ribosomes to the m-RNA for the initiation of the protein synthesis and their
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Figure 1. Two approaches to model the �-ASEP: (a) extended particles which cover � lattice
sites each and move via next-neighbour hopping; (b) point particles with certain initial states and
modified hopping rules.

detachment at the point of termination are modelled by open boundaries, where particles may
enter and exit the lattice with rates that differ from the bulk hopping rates. Using mean-field
theory, the authors studied the steady state of this process. More recently, the time-dependent
conditional probabilities [5], the dynamical exponent [6] and the phase diagram of the open
system have been determined [7–10].

However, the understanding of symmetries of the model and of its hydrodynamic limit has
remained incomplete so far. In [8] a hydrodynamic equation is proposed phenomenologically,
employing fitting parameters, which are matched to simulation data. In the present paper,
several basic physical and mathematical properties of the �-ASEP with periodic boundary
conditions are derived from its microscopic dynamics, generalizing a mapping to the zero
range process [11] and employing quantum Hamiltonian techniques [2]. In particular, we
obtain the hydrodynamic limit governing the density evolution of the �-ASEP on the Euler
scale.

The outline of this work is as follows: after introducing the two fundamental models
(�-ASEP and zero range process) and reviewing some facts about their stationary properties in
section 2, the dynamics of the �-ASEP are studied by two different approaches: In section 3, the
investigation of the motion of a tagged particle in the framework of the quantum Hamiltonian
formalism leads to an expression for the average velocity and the time-dependent diffusion
constant of the tracer particle. The velocity term is then confirmed by the general form of a
hydrodynamic equation of the �-ASEP which is derived in section 4. Section 5 finally exposes
the hidden SU(2) symmetry as a fundamental algebraic property of the �-SEP, which arises
from the �-ASEP by requiring left/right-symmetric hopping rates.

2. �-ASEP and ZRP

2.1. The �-ASEP

The �-ASEP is the discrete nonequilibrium analogue of a one-dimensional Tonks gas, including
the ASEP as a special case for � = 1. N particles are placed on a one-dimensional lattice S

consisting of L sites k = 1, . . . , L (figure 1(a)). Each particle covers � adjacent sites. The
parameter � is an integer number which determines the extension of the particles in units of the
lattice spacing a. In the following, � will be called the length of a particle. As time proceeds,
the particles change their locations on the lattice by next-neighbour random hopping under
exclusion interaction. Provided that their right- and left-neighbour sites respectively are not
occupied, they move one site to the right with rate p, or one site to the left with rate q. The
location of a particle on the chain is denoted by the location of its right end.
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Figure 2. Mapping between ZRP and �-ASEP: Lattice sites are turned into particles, particles are
replaced by holes; the stochastic hopping rates p and q are interchanged.

In figure 1 this model is compared with an equivalent description (figure 1(b)), where each
extended particle is composed of � monomers. In the latter case, the initial states are restricted
to those where particles are grouped in �-tuples at adjacent sites. Hopping processes take
place between sites which are � lattice spacings afar and which enclose �− 1 occupied sites in
between. This monomer description is useful for the application of the quantum Hamiltonian
formalism to the �-ASEP (see below).

2.2. Mapping between the �-ASEP and a zero range product (ZRP)

One important steady-state property of the �-ASEP follows directly from its definition. As sites
are always correlated, the �-ASEP does not possess a stationary product measure. However,
the existence of a stationary product measure is an important ingredient in the conventional
derivation of hydrodynamic properties. In order to recover it, the �-ASEP can be mapped onto
a different lattice gas model: the ZRP [12]. The ZRP does have a stationary product measure,
a fact which is used in section 4 to derive the hydrodynamic equation for the density evolution
of the �-ASEP. Furthermore, the ZRP picture will be of help when considering the motion
of a tagged particle in section 3. The ZRP is named after the fact that its particles have zero
interaction range, i.e. there is no exclusion and jump rates do not depend on the occupation
number of the target site.

In the following, a ZRP will be considered where particle hopping from a site occupied
by n particles occurs with fixed biased rates q and p to the left or right respectively. Similar
to the case � = 1 [11], the �-ASEP can be mapped onto this ZRP by replacing particles by
ZRP sites and holes by ZRP particles (figure 2). The appropriate coordinate transformation
(cf figure 3) between the ZRP with M particles on a lattice of N + 1 sites j = 0, 1, . . . , N, and
the �-ASEP, having N particles on a lattice of L = �N + M sites k = 1, . . . , L is explicitly
given by

k̃ =

 j̃−1∑

j=0

cj(t)


+ j̃�, (1a)

where k̃ is the �-ASEP lattice site corresponding to a certain ZRP site j̃ and cj(t) denotes the
ZRP particle density at site j at time t. The ZRP site j = 0 is not turned into a particle but
determines the position of the first �-ASEP particle. This procedure guarantees the uniqueness
of the transformation. In the continuum limit, where the lattice constant a approaches zero,
the discrete coordinates j and k may be replaced by continuous variables y and x:

x =
∫ y

0
du c(u, t) + ly + a

2
[c(0, t) − c(y, t)] + O(a2). (1b)
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Figure 3. Transformation of coordinates and densities: ZRP and �-ASEP quantities are related by
a transformation between time-independent and time-dependent coordinates; the ZRP-site ‘zero’
provides a left boundary of the �-ASEP lattice (shown here for N = 5, M = 6, � = 2).

The ZRP density c is related to the �-ASEP particle density ρ by

ρk̃ = 1

cj̃ + �
(2a)

and

ρ(x) = 1

c(y) + �
. (2b)

Whenever speaking of the density ρ in the following, indeed the particle density, i.e. the
fraction of particles per lattice unit, is referred to, as opposed to the coverage density ρc and
hole density ρh, respectively.

2.3. Stationary state

The stationary state of a ZRP is known [12]. For a periodic system all ZRP configurations
of the present model are equally probable. Due to the existence of the one-to-one mapping
between ZRP and �-ASEP configurations on (periodic) lattices of fixed length and particle
number (N, L−�N) and (L, N), respectively, the stationary weights of the �-ASEP must also
be distributed equally among all configurations on a ring.

The stationary properties of such a system can be deduced from a partition function of
the form

Z =
Nmax∑
N=0

zNZN , (3)

where z denotes the fugacity and ZN is the N-particle partition sum. Nmax indicates the
maximum number of particles fitting completely on L sites. As all states contribute equally,
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ZN is given by the number of possible different N-particle configurations on a lattice of length
L [7, 13]:

ZN =
(

L − (� − 1)N

N

)
. (4)

The expectation value and the fluctuations of the particle number N are calculated from the
first and second derivatives of Z with respect to the fugacity z using the following standard
relations:

〈N〉 = Lρ =
∑Nmax

N=0 NzNZN

Z
= z

d

dz
ln Z, (5a)

〈N2〉 − 〈N〉2 = z
d

dz

(
z

d

dz
ln Z

)
. (5b)

In the hydrodynamic limit, the partition sum is approximated by its maximum term and a
stationary density-fugacity relation may be derived as

z = ρ(1 − (� − 1)ρ)�−1

(1 − �ρ)�
. (6)

The stationary density fluctuations are given by

〈N2〉 − 〈N〉2

L
= z

dρ

dz
= ρ(1 − (� − 1)ρ)(1 − �ρ). (7)

For � = 1, equation (7) reduces to the well-known expression for the compressibility of the
ASEP:

κASEP = 〈N2〉ASEP − 〈N〉2
ASEP

L
= ρ(1 − ρ). (8)

The extra factor in (7) may be written as (1/L)(L−(�−1)N). This term, ranging between 1/�

and 1, specifies which fraction of the system is formed by holes and particle ends. It accounts
for the fact that the extended particles, constructed as a chain of � monomers, are stiff, and
that they move simultaneously. The fluctuations in the particle number taken per volume of
holes and ends (L − (� − 1)N) are the same for any monodisperse system S(α) which contains
particles of an arbitrary length �(α) provided that the particle and the hole densities are fixed
a priori.

3. Motion of a tagged �-ASEP particle

In experiments, a common procedure to investigate the dynamics of a diffusive system is
to mark a particle and to track its motion. In the following, the motion of such a tagged
particle is examined with analytical tools. The simplest conceivable case is the one of a system
without interparticle interactions and without the influence of an external field. A free particle
moving according to symmetric hopping rates on a lattice performs a random walk. Starting
at time t = 0 at an initial position x0, its location at a time t > 0 fluctuates stochastically
around the expectation value 〈x〉 ≡ x0. An external field, i.e. biased hopping rates, causes
a particle to move forward into the direction of the drive. The expectation 〈x − x0〉 of the
distance covered by this particle is different from zero and proportional to its average velocity.
Diffusive fluctuations arise again due to the stochastic motion.

If one traces a certain particle of the �-ASEP, a similar type of motion is expected which
may be decomposed into a drift term and a diffusion term. However, the calculation of the
corresponding average velocity v and the diffusion constant D is not trivial anymore because
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collisions cause time correlations in the random displacement of the tagged particle. In order
to obtain the average velocity of the marked particle, one counts the hopping events that this
particle accomplishes starting from a time t = 0. At a time t > 0, the distance (in units of the
lattice spacing) the particle has covered is given by the difference of the number of left and
right jumps it has performed. The average distance is proportional to the average velocity v of
the tagged particle over that time.

In the ZRP picture, the average velocity of �-ASEP particle number i corresponds to the
difference of leftward and rightward ZRP currents j(i → i−1)−j(i−1 → i). The calculation
of these currents is carried out conveniently in the quantum Hamiltonian formalism, where
the master equation of the ZRP is rewritten in terms of a Schrödinger equation in imaginary
time [2]:

d

dt
|P(t)〉 = −HZRP|P(t)〉. (9)

The ZRP Hamiltonian HZRP acts on the state space H of the probability vectors |P(t)〉, which
are linear combinations of the probabilities Pη(t) to find the ZRP lattice in a state η at a
time t:

|P(t)〉 =
∑

η

Pη(t)|η〉. (10)

The ZRP Hamiltonian takes a simple form in terms of single-site operators. Products of those
operators represent transitions between different system configurations, i.e. hopping events
between adjacent sites. Let a−

j and a+
j be operators which create and annihilate a particle at

site j. The off-diagonal part of the Hamiltonian is formed by the negative sum of all such
hopping operators, multiplied with the corresponding hopping rates q and p:

HZRP,off =
N−1∑
j=0

h
off
j,j+1, h

off
j,j+1 = −qa+

j a−
j+1 − pa−

j a+
j+1. (11)

The diagonal part is deduced from the condition that probability must be conserved, i.e.
〈s|HZRP = 0 , 〈s| being the (N + 1)-dimensional constant summation row vector (1, 1, . . . , 1).
The relations

〈s|a−
j = 〈s|1, 〈s|a+

j = 〈s|mj , (12)

where mj is a diagonal operator replacing a+
j in its action on 〈s| yield

HZRP =
N−1∑
j=0

hj,j+1, hj,j+1 = −qa+
j a−

j+1 − pa−
j a+

j+1 + qmj + pmj+1. (13)

3.1. Extension of the state space

Focusing again on the task to keep track of local hopping events, this Hamiltonian is modified
as follows. In order to create a counting mechanism for particles hopping between the chosen
sites i and i − 1, one enlarges the tensor state space H of the ZRP lattice by an additional
infinite-dimensional subspace ℵ, whose basis vectors represent the number k of backward
minus forward hops between i and i− 1. Their entries are all zero except the kth counted from
the ‘middle’ downwards:

ℵ = Span{|k〉: k ∈ Z} (14)
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. . . , |−1〉 =




...

0
1
0
0
0
...




, |0〉 =




...

0
0
1
0
0
...




, |1〉 =




...

0
0
0
1
0
...




, . . . (15)

One modifies the Hamiltonian such that its action on the elements of ℵ transfers |k〉 in |k ∓ 1〉
whenever its action on H leads to a hopping event between the lattice sites i and i − 1 in the
ZRP. This is achieved by extra terms

H = HZRP + qa+
i−1a

−
i (1 − x−) + pa−

i−1a
+
i (1 − x+). (16)

All ZRP operators are enlarged to the new state space such that their action remains local on H.
x− and x+ are ladder operators which act nontrivially only on ℵ, i.e. the zero range operators
and the counting operators commute. x± are defined by the relations

x−|k〉 = |k − 1〉, x+|k〉 = |k + 1〉. (17)

Finally, one constructs an operator x on ℵ for which all |k〉 are eigenstates with eigenvalues k:

x|k〉 = k|k〉. (18)

In the chosen basis (15) of ℵ, x is represented as a diagonal matrix

x = diag(. . . , −2, −1, 0, 1, 2, . . .). (19)

The average velocity v and the diffusion coefficient D are derived from the long time limits of
the expectation value of x and its fluctuations:

v = lim
t→∞

d

dt
〈x〉, (20)

D = lim
t→∞

d

dt
[〈x2〉 − 〈x〉2]. (21)

The nth moment of the operator x in the stationary state |P∗〉 is given by

〈xn〉 = 〈s|xn exp(−Ht)|P∗, 0〉, (22)

where

|P∗, 0〉 = |P∗〉 ⊗ |0〉, 〈s| = 〈s1| ⊗ 〈s2|, 〈si| = (. . . 1, 1, 1 . . .) ∈ H\ℵ, ℵ.

While the bra-vector in (22) is the summation vector, adapted to the new Hilbert space, the
ket-vector is given by the tensor product of |P∗〉 ∈ H\ℵ, characterizing the stationary state of
the ZRP, and |0〉 ∈ ℵ, which sets the counting mechanism to zero at the beginning.

3.2. General calculation of moments

In order to calculate the moments 〈xn〉 of the distribution of the tagged particle explicitly, the
new Hamiltonian (16) is formally split into a non-pertubative term H0 and a pertubative part
V , where

H0 = HZRP, (23)

V = qa+
i−1a

−
i (1 − x−) + pa−

i−1a
+
i (1 − x+). (24)
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The exponential exp(−Ht) is expanded in a time-ordered Dyson series:

exp(−(H0 + V )t) = exp(−H0t)

[
1 −

∫ t

0
dτ1V(τ1) +

∫ t

0
dτ1

∫ τ1

0
dτ2 V(τ1)V(τ2) − · · ·

]
,

(25)

where

V(τ) = exp(H0τ)V exp(−H0τ). (26)

For the derivation of the nth moment of x, only terms which are at most of order n have to be
taken into account. All higher orders vanish identically. Thus

〈x〉 = 〈s|x exp(−Ht)|P∗, 0〉 = 〈s|x exp(−H0t)|P∗, 0〉 − 〈s|x exp(−H0t)

∫ t

0
dτ V(τ)|P∗, 0〉

= 〈x〉(0) + 〈x〉(1) (27a)

and

〈x2〉 = 〈s|x2 exp(−Ht)|P∗, 0〉 = 〈s|x2 exp(−H0t)|P∗, 0〉
− 〈s|x2 exp(−H0t)

∫ t

0
dτ V(τ)|P∗, 0〉

+ 〈s|x2 exp(−H0t)

∫ t

0
dτ1V(τ1)

∫ τ1

0
dτ2 V(τ2)|P∗, 0〉

= 〈x2〉(0) + 〈x2〉(1) + 〈x2〉(2). (27b)

Setting 〈x(t = 0)〉 = 0, these expressions reduce to

〈x〉 = 〈x〉(1), (28a)

〈x2〉 = 〈x2〉(1) + 〈x2〉(2). (28b)

Explicit expressions for the higher moments in terms of correlation functions can be obtained
analogously, but are not considered below. As this strategy of calculating the moments of
a random walk driven by some underlying Markov process does not appear to be widely
known, we stress that this derivation can be applied to any counting process for any underlying
Markov chain given by some H0. The perturbation V is determined by the events that increase
(multiplied by x+ − 1) or decrease (multiplied by x− − 1) the counter (particle position),
respectively. In particular, the generating function 〈exp(αx)〉 can be obtained by replacing
x± → exp(±α) in V . This proves that indeed the mth moment is given exactly by the terms up
to same order in the perturbative expansion. Notice that up to here we did not use stationarity
of the distribution P∗. The expressions derived above are valid for any initial distribution.

3.3. Driven motion: calculation of the average particle velocity v

First an explicit expression for the average particle velocity (20) shall be obtained. We present
the calculation in some detail. Equation (28a) implies

〈x〉 = −〈s|x exp(−H0t)

∫ t

0
dτ V(τ)|P∗, 0〉 = −〈s|x

∫ t

0
dτ V(τ)|P∗, 0〉, (29)

where exp(−H0t) has been absorbed into 〈s|. Substituting the time-dependent operator V(τ)

by (26) yields

〈x〉 = −〈s|x
∫ t

0
dτ exp(H0t)V exp(−H0t)|P∗, 0〉 = −〈s|x

∫ t

0
dτ V |P∗, 0〉. (30)
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The integration is then trivial:

〈s|x
∫ t

0
dτ V |P∗, 0〉 = t〈s|xV |P∗, 0〉. (31)

Inserting the explicit form of V and applying relations (12) for the action of the creation and
annihilation operators results in the simplified expression for the expectation value

〈x〉 = −t[〈s1|qmi−1|P∗〉〈s2|x(1 − x−)|0〉 + 〈s1|pmi|P∗〉〈s2|x(1 − x+)|0〉]. (32)

The action of x− and x+ on |0〉 and of x on |−1〉, |0〉, |1〉 is given by relations (17) and (18).
The expectation of the ZRP operator mk in the stationary state is calculated from the product
measure as

〈s1|mk|P∗〉 = z, (33)

where the fugacity z can be identified with the probability for occupancy of a site in the
stationary state. Equation (32) simplifies to

〈x〉 = −tqz(0 + 1) − tpz(0 − 1) = t(p − q)z (34)

which in terms of the ZRP density c reads

〈x〉 = t(p − q)
c

1 + c
. (35)

Taking the time derivative and substituting c by the �-ASEP density ρ, the average velocity of
a tagged particle is obtained as

v = (p − q)
1 − �ρ

1 − (� − 1)ρ
. (36)

3.4. Diffusive motion: calculation of the diffusion constant D

Equations (36) and (28b) reduce the derivation of the diffusion constant D as defined in (21)
to the calculation of the temporal derivatives of the first- and second-order term of the second
moment of x.

The first-order term 〈x2〉(1) is obtained by a straightforward calculation similar to the one
of 〈x〉(1):

d

dt
〈x2〉(1) = −2(p + q)z. (37)

This is the direct contribution to the diffusion constant that one would have for Markovian
dynamics of the tagged particle, i.e. in the absence of any memory effects resulting from the
interaction.

The derivation of the second-order memory term of 〈x2〉, as given in equation (27b), is
a bit more subtle and requires an approximation to yield an explicit expression in terms of
the stationary density ρ. Inserting (26), absorbing e−H0t and e−H0τi into |P∗〉 and into 〈s| and
taking the time derivative, it simplifies to

d

dt
〈x2〉(2) = d

dt

∫ t

0
dτ1

∫ τ1

0
dτ2 〈s|x2V e−H0(τ1−τ2)V |P∗, 0〉

=
∫ t

0
dτ 〈s|x2V e−H0τV |P∗, 0〉. (38)

A straightforward calculation, where V is replaced by (24) and equation (12) and stationarity
of the zero range distribution is used, turns the memory term 〈x2〉(2) into the integral of the
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current–current correlation function. Translational invariance of the system then yields the so
far exact expression:

d

dt
〈x2〉(2) =

∫ t

0
dτ2 〈s1|[q2mi−1 − 2pqmi + p2mi+1]e−H0τmi|P∗〉. (39)

For symmetric hopping rates (v = (d/dt)〈x〉 = 0) we define the diffusion constant by

D = lim
t→∞

d

dt
〈x2〉. (40)

Applying the operator relation

∂t〈s1|ni = 1
2 〈s1|[mi−1 + mi+1 − 2mi] (41)

to expression (39), summing up (39) and (37), and without loss of generality setting i = 0 the
time derivative of the second moment (d/dt)〈x2〉 assumes the form

d

dt
〈x2〉 = 〈n0(t)m0(0)〉P∗ − 〈n0〉P∗ 〈m0〉P∗. (42)

This exact result is now approximated in terms of the stationary density c = 〈n0〉 by a
linearization of the density at time t:

n0(t) = c + ε0(t). (43)

The investigation of the time dependence of the fluctuations 〈εx(t)〉 in continuous space which
is governed by the linearized operator equation (41) leads to a solution for the time-dependent
correlator in the form of a Gaussian function for the initial condition 〈εi(0)mi(0)〉 = z. The
evaluation at x = 0 yields

〈ε0(t)m0(0)〉 = z
1 + c√

4πt
= c√

4πt
. (44)

In a last step, the stationary ZRP density c is replaced by the �-ASEP density ρ, and the
time-dependent diffusion constant D is obtained as

D = 1 − �ρ

ρ

1√
4πt

. (45)

This is consistent with the well-known subdiffusive behaviour [14–16] as observed for the
symmetric exclusion process (� = 1). The novelty of our result is the density dependence of
the amplitude. Treating the more general case of biased rates p �= q, one expects a diffusion
constant which depends on the initial state chosen; see [17] for a recent similar result coming
from a phenomenological approach.

4. Hydrodynamic equation

4.1. Derivation from ZRP properties

The one-to-one mapping between ZRP and �-ASEP is now exploited to derive the
hydrodynamic equation of the �-ASEP. In the ZRP there is no exclusion interaction between
the particles and a hopping event occurs with hopping rates q or p, whenever a site is occupied
by at least one particle. The probability to find site i non-empty at time t shall be called zi(t).
In the case of next-neighbour hopping and periodic boundary conditions, the ZRP density
evolution at any site i is described by the master equation

∂

∂t
ci(t) = qzi−1(t) + pzi+1(t) − (p + q)zi(t). (46)
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In the hydrodynamic limit, the lattice constant a approaches zero on a coarse-grained scale.
Substituting the discrete variable i by a continuous variable y, the master equation may be
expanded into a Taylor series in powers of a:

∂c(y, t)

∂t
= aB

∂z(y, t)

∂y
+ a2S

∂2z(y, t)

∂y2 + O(a3), (47)

where

B = p − q, S = p + q

2
(48)

characterize the contributions from the biased and symmetric part of the motion.
Assuming local stationarity at sufficiently long times [18], the fugacity may be substituted

by the stationary density, making use of the fugacity–density relation z(y, t) = c(y, t)/(1 +
c(y, t)) which is calculated from the well-established stationary properties of the ZRP. Inserting
this expression into (52) yields a continuity equation for the ZRP density as a function
of coordinate y and time t. The corresponding hydrodynamic equation for the �-ASEP is
calculated by applying the transformation rules (1b) and (2b). The ZRP current J(c, ∂yc),
which is a function of the ZRP density and density gradient, is thereby mapped onto the �-
ASEP current j(ρ, ∂xρ), being a function of the �-ASEP density and density gradient with
respect to a time-dependent coordinate x(t). Carrying out all substitutions in (52) results in
the sought-after hydrodynamic equation for the �-ASEP:

∂ρ(x, t)

∂t
= −aB

∂

∂x

[
ρ(x, t)(1 − �ρ(x, t))

1 − (� − 1)ρ(x, t)

]
+ a2S

∂2

∂x2

[
ρ(x, t)

1 − (� − 1)ρ(x, t)

]
. (49)

Equation (49) can be rewritten, introducing the ‘effective density’,

χ = ρ

1 − (� − 1)ρ
(50)

and the hole density

ρh = 1 − �ρ (51)

as

∂ρ(x, t)

∂t
= −aB

∂

∂x
[χρh] + a2S

∂2

∂x2
χ = −∂xj(χ, ρh). (52)

The form (52) of (49) reminds of the hydrodynamic equation for the ASEP in the case � = 1:

∂ρ(x, t)

∂t
= −aB

∂

∂x
[ρ(1 − ρ)] + a2S

∂2

∂x2
ρ. (53)

The concept of the effective density was first introduced in [19], where the average velocity of
N extended particles of length � on L lattice sites is proposed to equal v = 1 − χ. In terms of
v, as derived in the previous section, equation (52) reads

∂tρ = −aB∂x[vρ] − a2S∂xxv = −∂xj(ρ, v). (54)

Equations (52) and (54) match the result (36) for the average particle velocity v as obtained
for a tagged particle in the previous section.
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4.2. Mapping between ASEP and �-ASEP

A one-to-one mapping between �-ASEP and its special case of � = 1 can be stated explicitly
[6]. Let ρ1(x′, t) denote the ASEP particle density as a function of time and coordinate x′. The
corresponding transformations are

x′ = x − (� − 1)

∫ x

0
dx̃ ρ(x̃, t) + O(a), (55a)

ρ1(x′, t) = ρ(x, t)

1 − (� − 1)ρ(x, t)
= χ. (55b)

They prescribe a mapping between states on a lattice of L′ sites containing N particles of length
1 and a lattice of L = L′ + (� − 1)N sites containing the same number N of particles which
have length �. States which are transformed into each other will be called ZRP-equivalent
states in the following. Scanning the lattice from left to right and denoting each hole and each
particle encountered in an ordered sequence γi with γi ∈ {∅, A}, where ∅ represents a hole and
A represents a particle, yields identical sequences, whenever two states are ZRP-equivalent.

5. SU(2) symmetry of the �-SEP

For � = 1 and in the case of symmetric hopping rates p = q = 1, the �-ASEP reduces to the
symmetric exclusion process (SEP). One of the fundamental algebraic properties of the SEP
is the fact that its Hamiltonian is SU(2) symmetric [20]. In the following, the SU(2) symmetry
and its implications are investigated for the generalized SEP for particles of length � (�-SEP).

5.1. Quantum Hamiltonian formalism for the SEP

In the case � = 1, the quantum Hamiltonian in terms of single-site particle creation and
annihilation operators s∓

k and number operators nk, vk of the SEP is given by

HSEP =
∑

hSEP
k,k+1, hSEP

k,k+1 = −s−
k s+

k+1 − s+
k s−

k+1 + vknk+1 + nkvk+1. (56)

Choosing a tensor representation with the single-site basis

|A〉 =
(

0
1

)
, |∅〉 =

(
1
0

)
(57)

for one-particle states |A〉 and empty states |∅〉, representations of all operators s∓
k =

(σx ∓ σy)/2 and nk = (1 − σz)/2, v = (1 + σz)/2 may be constructed of Pauli
matrices σx,y,z.

The SU(2) symmetry of the SEP has useful consequences: the overall particle creation
and annihilation operators S∓ = ∑

k s∓
k together with the operator S3 = ∑

k(1/2 − nk) form
a spin-1/2 representation of the SU(2) algebra.

Utilizing the fact that HSEP commutes in particular with S∓, one can show that the local
density ρk = 〈nk〉 = 〈s|nk|P(t)〉 satisfies a diffusion equation

d

dt
〈nk〉 = −〈nkH

SEP〉 = 〈nk−1〉 + 〈nk+1〉 − 2〈nk〉. (58)

This relation reduces the density evolution of the many-particle problem to a single-particle
problem (solution of the lattice diffusion equation) and also implies a correspondingly simple
hydrodynamic limit, namely the diffusion equation. More generally, the SU(2) symmetry
implies that any k-point many-particle correlation function can be calculated from an associated
problem with at most k particles.
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Having asserted the existence of a general one-to-one mapping between ASEP and �-
ASEP (55b), naturally the question arises, which operator in the �-SEP state space satisfies the
same kind of equation (58).

5.2. Quantum Hamiltonian formalism for the �-SEP

The generalized form of the Hamiltonian (56) for � � 1 is

H�−SEP =
∑

h�−SEP
k,k+�

h�−SEP
k,k+� = − s−

k nk+1nk+2 · · · nk+�−1s
+
k+� − s+

k nk+1nk+2 · · · nk+�−1s
−
k+�

+ vknk+1 · · · nk+� + nk · · · nk+�−1vk+�. (59)

There are few formal but important physical differences in comparison with the SEP
Hamiltonian (56). For instance, the action of s∓

k on any configuration of the lattice S is not
equivalent to the creation and annihilation of an extended particle, but it creates or annihilates
just a piece of it (one monomer). Furthermore, H�−SEP is not anymore symmetric under the
action of a true particle creation or annihilation operator and such an operator is of no relevance
for the SU(2) symmetry. A formula how to construct the operators which are taking over the
role of S∓,3 for the �-SEP as a representation of the Lie algebra SU(2) is given in the following.

5.3. Construction of a new ‘creation’ operator S̃−

The transformation between SEP and �-SEP relates states to each other which are ZRP-
equivalent.

Definition. Let |ξ′
1〉, |ξ′

2〉 be two arbitrary SEP states obeying

|ξ′
2〉 = S−|ξ′

1〉 (60)

and let |ξ1〉, |ξ2〉 denote the ZRP-equivalent �-SEP states. S̃− is defined by the relation

|ξ2〉 = S̃−|ξ1〉. (61)

S̃+,3 are defined analogously.

Due to their construction, S̃∓,3 form a representation of SU(2) and the Hamiltonian is
symmetric under their action:

[H�−SEP, S̃±,3] = 0. (62)

While S− transforms between vectors of a fixed length 2n, S̃− maps a vector of length 2n to
a vector of length 2n+�−1 (see figure 4). To be able to operate within one state space of fixed
dimension, a new model of the SEP and �-SEP, generalized to two classes of particles A and
B will be introduced. For the sake of simplicity of notation the case � = 2 shall be considered
first. The results are generalized to � � 1 afterwards.

The basis of the new state space K is given by the tensor product states of the single-site
basis

|0〉 =

 1

0
0


 , |A〉 =


 0

1
0


 , |B〉 =


 0

0
1


 . (63)
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A A A A AA

A A A A A AA AA
S- S-~

Figure 4. Creation of particles in a monomer and dimer system, yielding ZRP-equivalent states:
S̃− creates dimers on available and additional volume.

The matrix representation of the single-site A- and B-particle creation, annihilation and number
operators in this basis is

sA+ =

 0 1 0

0 0 0
0 0 0


 , sA− =


 0 0 0

1 0 0
0 0 0


 , nA =


 0 0 0

0 1 0
0 0 0


 ,

sB+ =

 0 0 1

0 0 0
0 0 0


 , sB− =


 0 0 0

0 0 0
1 0 0


 , nB =


 0 0 0

0 0 0
0 0 1


 .

(64)

5.3.1. Monomer space M(� = 1). The new representation of any monomer configuration
{αi}, αi ∈ {A, 0} on the lattice S′ of length L′ is realized by the following steps:

• Double the lattice S′, adding L′ new sites to its right end.
• Fill the new sites with B particles.
• Construct the tensor product state representation of the complete chain in the new

basis (63).

A monomer state which has previously been represented by a 2L′
-dimensional vector |ξ′〉 ∈

H⊗L′
is replaced by a 32L′

-dimensional vector |µ〉 ∈ K. All new monomer states |µ〉 of
arbitrary even dimension form a subspace of K:

M = {|µ〉} = {|κ〉 ∈ K: a + v = b, B particles at right end}, (65)

where a, b and v denote the number of A particles, B particles and holes respectively, which
are contained in the configuration represented by |κ〉 (see figure 5, left).

The dynamics of the monomer system are governed by the monomer Hamiltonian Hm.
Hm is obtained by substituting all HSEP operators in (56) by the ones which are labelled with a
superindex A as introduced above. The new vacancy operator v is defined as v = 1−nA −nB.
The action of the monomer Hamiltonian Hm is local on the left half of the new monomer
system and restricted to A particles and vacancies.

5.3.2. Dimer space D(� = 2). The new representation of a dimer configuration {βi}, βi ∈
{A, ∅}, on a lattice S of length L is constructed in the same way with the only difference that
the number of lattice sites added equals the number v of zeros in {βi}. Thus, a state previously
represented by a 2L-dimensional vector |ξ〉 is replaced by a 3L+v-dimensional vector |δ〉 ∈ K.
The subspace of K, consisting of all such dimer vectors |δ〉, is determined by

D = {〈δ〉} = {〈κ〉 ∈ K: v = b, A particles exist pairwise, B particles at right end}. (66)

The dimer Hamiltonian Hd for a system of size L + v is given by the H2−SEP for a lattice of
length L, where all operators except v are labelled with a superindex A.
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A A A A AA

A A A A A AA AA

S- S-~

B B B

B B B

B

P

Pt

Figure 5. Action of the mapping operators P , Pt on dimer states (right) and monomer states (left),
construction of the creation operator S̃− from the monomer creation operator S− in dimer space.

5.3.3. Mapping operators. The new representation enables one to give the mapping between
ZRP-equivalent monomer and dimer states (see figure 5) explicitly in operator form:

|δ〉 = Pt|µ〉, (67a)

|µ〉 = P |δ〉, (67b)

where

P =
1∏

i=N−1


1 +


sB−

N sA+
N

i+1∏
j=N

Pj,j−1 − 1


 nA

i


 ,

Pt =
N−1∏
i=1


1 +


 N∏

j=i+1

Pj,j−1s
A−
N sB+

N − 1


 nA

i


 .

(68)

The permutation operator Pj,j−1 permutes two single-site vectors in the tensor product and can
be expressed as

Pij = vivj + nA
i nA

j + nB
i nB

j + sA−
i sA+

j + sA+
i sA−

j + sB−
i sB+

j + sB+
i sB−

j

+ sA−
i sB+

i sB−
j sA+

j + sB−
i sA+

i sA−
j sB+

j . (69)

The construction of S̃− ≡ S̃A−
is now obvious: let |µi〉|δi〉, (i = 1, 2) be ZRP-equivalent

monomer and dimer states with

|µ2〉 = SA−|µ1〉. (70)

Then

S̃A−|δ1〉 = |δ2〉 = Pt|µ2〉 = PtS−|µ1〉 = PtS−P |δ1〉. (71)

5.4. Diffusion equation for �-SEP operators

All dimer operators Oδ can be constructed as PtOµP from monomer operators Oµ. The operator
ñk = PtnkP takes over the role of the monomer number operator: ñk is the quantity which
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fulfills a diffusion equation with respect to the dimer Hamiltonian Hd :

〈s̃|ñkH
d = 〈s|PPtnkPHd = 〈s|nkH

mP = 〈s|(nk−1 − nk+1 + 2nk)P

= 〈s̃|Pt(nk−1 − nk+1 + 2nk)P = 〈s̃|(ñk−1 − ñk+1 + 2ñk). (72)

The validity of PHd |δ〉 = HmP |µ〉 in K follows from the construction of the mapping.
However, ñk is not diagonal in the chosen basis of K, and it is hard to draw conclusions
as to its expectation value. Therefore, a diagonal operator Qk is constructed, which equals ñk

in its action on 〈s̃| = 〈s|P .
The operator ñk picks those dimer states from 〈s̃|, which are ZRP-equivalent to the ones,

nk picks from 〈s|. The action of an operator Qk, which replaces ñk, thus cannot be local on
the site k but must involve several lattice sites. Its action on a certain configuration depends
on the number of particles and its label k.

Qk can be expressed in terms of diagonal matrices Qα
k only:

Qk =
k−1∑
α=0

Qα
k , (73)

where

Q0
k =

k−1∏
s=1

vsnk for α = 0,

Qα
k =

∑
r∈Rα

(
α∏

i=1

nri

)(∏
s∈Sr

vs

)
nk+α for α � 1,

Rα = {r = (r1, . . . , rα): [ri ∈ {1, . . . , α + k − 2}] ∧ [ri + 2 � ri+1]},

Sr = {1, . . . , α + k − 1}
∖[

α⋃
i=1

{ri, ri+1}
]

,

(74)

The local monomer number operator nk picks all states from 〈s| where site k is occupied. Qk

instead chooses all such dimer states from 〈s̃| where the (α + 1)th dimer, counted from the
left, covers sites k + α and k + α + 1, and where α is a number between 1 and k. Thus, each
Qα

k sums up all possible configurations of placing α dimers (α A particle pairs) and k − 1 − α

vacancies on the first k + α − 1 sites. The position of the left A particle of dimer number i is
chosen with the element ri of the vector r. Its elements must appear in certain configurations
due to the pairwise arrangement and exclusion interaction of the A particles.

It is straightforward to generalize Qk to the case of particles of arbitrary length � � 1.
The case of α � 1 in (74) is substituted by the general expression

Qα
k =

∑
r∈Rα

(
α∏

i=1

nri

)(∏
s∈Sr

vs

)
nk+(�−1)α,

Rα = {r = (r1, . . . , rα): [ri ∈ {1, . . . , k + (� − 1)α − �}] ∧ [ri + � � ri+1]} (75)

Sr = {1, . . . , k + (� − 1)α − �}
∖[

α⋃
i=1

{ri, ri + 1, . . . , ri+(�−1)}
]

.
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6. Summary and conclusions

The purpose of this work was to investigate the properties of extended interacting particles,
moving stochastically on a one-dimensional lattice. The main results can be summarized
as follows: one-to-one mappings between �-ASEP, ASEP and a certain class of ZRP have
been stated explicitly. It has turned out very useful to exploit those transformations to derive
basic properties of the �-ASEP, in particular the time-dependent diffusion constant for a tracer
particle and the hydrodynamic equation for the local density evolution. A tagged �-ASEP
particle shows the type of subdiffusive behaviour as known for the case � = 1 of the ASEP.
The extension of the particles as a new feature becomes manifest in the prefactor of the diffusion
constant, which has been calculated as a function of the particle density. The methods applied
are suitable for a generalization to any process which can be mapped onto some ZRP. As a
most important outcome of the mapping, the hydrodynamic equation of the �-ASEP has been
deduced from microscopic properties of the discrete system. The resulting non-linear and
convex current–density relation (for finite �) is qualitatively similar to that of the ASEP, but it
also shows some new features: it is asymmetric for � �= 1. The symmetry of particle and hole
density is broken. The hydrodynamic equation has a natural form for � � 1 if expressed in
terms of the particle density and of a generalized average particle velocity. All results obtained
for the �-ASEP also hold for a polydisperse system of particles of arbitrary length where the
length parameter � must be replaced by an average length �̄ = (1/N)

∑N
i=1 �i.

In the case of � = 1, it is known how to link some hydrodynamic properties of the ASEP
to the algebraic structure of the stochastic many-body system. Especially for the case of
symmetric hopping rates (SEP), the SU(2) symmetry has proved a valuable attribute. In this
work, the SU(2) symmetry has been established for the case of extended particles (�-SEP).
A formalism has been introduced in which all SEP operators may be generalized to �-SEP
operators under the condition of ZRP equivalence.
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